Viscosity Modifiers: A Fundamental Study

Lelia Cosimbescu B. Tarasevich; P. Bhattacharya; J. Robinson S. Krueger; U. S. Ramasamy; A. Martini; Applied Synthetic Chemistry Group Energy Processes and Materials

May 16, 2016

PNNL-SA-117540

Pacific Northwest

Viscosity Index Improvers and Polymer Architectures

Fact

VMs/VIIs are additives that minimize the change of fluid viscosity with temperature

Popular/empirical belief

Change in size (Rg, Rh) is the mechanism

Probing the Mechanism

- Methods used to probe the expansion mechanisms
 - Direct methods
 - Small angle neutron scattering (SANS)
 - Dynamic light scattering (DLS)
 - Triple detection size exclusion chromatography (SEC)
 - Indirect Methods
 - Flory-Fox Equation (change in coil size is directly proportional to change in the intrinsic viscosity)
 - Molecular dynamic simulations (MDS)
 - Simulation structures are created by placing one model VI polymer in an alkane solvent
- Requirement: measurements/simulation must be run at 40 and 100 °C
- Viscosity Index is a measure of the change of fluid viscosity with temperature (based on KV40 and KV100)
- Can we predict VIs with any of the methods?

Prior Studies

4

Rg data from SANS Experiments

	Radius of Gyration / nm				
Polymer ⁻	Dodecane 40ºC	Dodecane 100ºC	Xylene 40ºC	Xylene 100ºC	
OCP1	12.4	11.1	11.9	12.4	
PMA1	12.8	13.6	12.9	13.4	
PMA2	15.5	17.3	17.5	18.1	

M.J. Covitch, K.J. Trickett, Advances in Chemical Engineering and Science, (5),

DLS studies (PNNL)

Polymers were dissolved in hexadecane at 0.5% and then centrifuged to remove large aggregates (6000 nm diameter) to improve the autocorrelation function (ACF)

The average diameters were determined with temperature corrected solvent viscosities

Temperature sweep from RT to ~90 °C (software limitation)

A measurement was taken every 5-10 °C

DLS Data

DLS Results

Sample	Diameter low T (nm)	Diameter high T (nm)	Percent change	
Bench 1 (OCP)	118.37 (25°C)	21 (85°C) 20.98 (70°C)	-82.25% -82.27%	VI=188
Bench 2 (PAMA)	73.17 (25°C)	77.58 (95°C) 68.43 (70°C)	+6.03% -6.47%	VI=238
HBPE 61753-159	21.4 (25°C)	22.4 (70°C)	+4.67%	VI=185
Star 61888-15	24.75 (25°C)	31.227 (95°C) 23.94 (70°C)	+26.16% -3.27%	VI=204

Positive/Negative percent indicates size increases/decreases at higher temperatures

- Bench 1 (OCP) shows large decrease in size throughout the temperature range tested
- Bench 2 (PAMA) shows a moderate decrease in size throughout the temperature range tested, with a slight increase at the highest T
- ▶ HBPE shows negligible change with a slight increase in size from low to high T
- Star polymer shows a high increase in size from low T to high T

Proudly Operated by Battelle Since 1965

Pacific Northwest

NATIONAL LABORATORY

Molecular Dynamic Simulations (UC Merced)

- Individual polymers are placed in dodecane (solvent mimic for oil)
- Characterization simulation at 40 and 100 °C
- Radius of gyration (R_q) information is collected for 100ns of simulation time
- Frequency histograms are plotted with the collected R_g data
- %change is estimated using the following equation:

%change =
$$\frac{(\text{mean}_{R_g} - 100^{\circ}\text{C} - \text{mean}_{R_g} - 40^{\circ}\text{C})}{\text{mean}_{R_g} - 40^{\circ}\text{C}}$$

OCP in dodecane

Rg Distribution for Various Structures

Proudly Operated by Battelle Since 1965

9

Rg Distribution for Various Structures

MD Simulations Summary

- PAMA shows a significant increase in Rg with temperature
- OCP and Star show a marginal decrease in Rg
- HBPE remains the same

Mean	PAMA	OCP	HBPE	Star
40 °C	17.1	16.5	17.2	21.5
100 °C	22.5	16.1	17.3	21.0
% Change	31.5	-2.2	0.18	-2.4

SANS Measurements (NIST)

- NG-7 -- 30-m SANS instrument
- Temperature sweep: 25, 40, 70 and 100 °C
- Samples ran in deuterated hexadecane-d₃₄ (good base oil mimic)
- Analogs: Bench 1 (OCP), Bench 2 (PAMA), 61888 (Star), 61753 (HBPEhyperbranched)
- Constant concentration of 0.5% (w/w) for all
- SANS profile plots generated: scattering vector Q, versus scattering intensity I(Q)
- Fit the data to established models (Porod exponent, n)

SANS Raw Data for HBPE

NATIONAL LABORATORY

Example of fitting curves for HBPE at 25 °C

Fit to PolymerExclVol, 12/3/15, 11:34:01 AM

Data file: X61753_25c_abs

Scale Factor I0 =	5.39162	±	0.028	7683	
radius of gyration Rg [A]	=	12	3.584	±	0.533071
Porod exponent m =	1.97578	±	0.003	23221	
Incoh Bgd (cm-1) =	0.0828205	±	8.1260	04e-05	
Incoh Bgd (cm-1) =	0.08	±	0		
chisq = 3542.88					
Npnts = 202	$Sqrt(X^2/N) = 4.$	187	796		
Fitted range = [0,201] =	0.003887 < Q < 0	.57	54		
FitError = No Error	FitQuitRea	ISO	n = No	Error	

Fit to CorrLength, 12/3/15, 4:19:20 PM

Data file: X61753_25c_abs

Porod Scale =	1.14454e-05	±	0.000	242497	
Porod Exponent =	1.95558	±	3.545	75	
Lorentzian Scale =	6.1567	±	1.209	91	
Lor Screening Length [A] =	92	.6952	±	5.78919
Lorentzian Exponent =	1.95461	±	0.043	5962	
Bgd [1/cm] =	0.08	±	0		
chisq = 4191.13					
Npnts = 202	$Sqrt(X^2/N) =$	4.555	501		
Fitted range = [0,201] =	= 0.003887 < Q <	0.57	54		
FitError = No Error	FitQuitR	easo	n = No	Error	
FitError = No Error FitQuitReason = No Error					

SANS - Radius of Gyration Values

- Polymer excluded volume fitting function
- Good fit for Bench 1 (OCP) and Bench 2 (PAMA)
- Porod exponent = 3, would mean collapsed polymer coil

Sample	Rg	Porod	
bench1_25c.abs	143	1.75	OCP
bench1_100c.abs	135	1.71	••••
HBPE_25c.abs	124	1.98	HRPE
HBPE_100c.abs	126	1.93	
Star_25c.abs	95	2.0	Star 1
Star_100c.abs	105	1.9	
bench2_25c.abs	290	1.85	PAMA
bench2_100c.abs	258	1.72	

SANS and **DLS** comparison

- Bench 1 (OCP), star and hyperbranched show same trend
 - OCP first point may be an outlier
- Bench 2 PAMA shows opposite trends
 - Anomalous behavior in the range studied

Summary- Temperature Effects on Polymer Size

- Not all methods agree
- Experimental methods (DLS and SANS) agree with exception of PAMA

Method	PAMA	OCP	HBPE	Star
SANS (Rg)				÷
DLS (Rh)	÷			÷
MD (Rg)	÷	Marginal		Marginal

VI=238 VI=188 VI=185 VI=204

Conclusions

- Can we predict polymer behavior (VI) with SANS, DLS, MD?
- The short answer is NO, at least not fully
- Due to more complex interactions and effects
 - Inter and intra-molecular interactions not accounted for
 - Shear resistance
 - Polarity
 - Molecular weight (huge influence on viscosity)
 - Topology and architecture

Conclusions Cont'd

If multiple methods point in the same direction, size changes with temperature of can be predicted However, VI cannot be predicted OCP data agrees with literature PAMA data is in disagreement

Acknowledgements

- Funding
 - DOE: Kevin Stork

- The PNNL Team
 - Dr. Joshua Robinson (synthesis)
 - Dr. Barbara Tarasevich (DLS)
 - Dr. Priyanka Bhattacharya (DLS)
- NIST
 - Dr. Susan Krueger
- UC Merced
 - Dr. Ashlie Martini
 - Uma Shantini Ramasamy
- Evonik
 - David Gray, JoRuetta Ellington
- Afton Chemical
 - Dr. Jeff Guevremont

Fit correlations for analogs with Porod exponent ~2

Sample	Corr Leng	Porod	Bgnd
61753_25c.abs	93	1.96	.08
61753_100c.abs	93	1.94	0.09
61888_25c.abs	56	2.0	.08
61888_100c.abs	68	2.0	.09

SANS Data

Sample	Scale Fact	Rg	Porod	Bgnd
bench1_25c.abs	3.1	143	1.75	.09
bench1_100c.abs	2.7	135	1.71	.1
bench1_25c.sub	2.9	141	1.83	001
bench1_100c.sub	2.5	130	1.85	001
61753_25c.abs	5.4	124	1.98	.08
61753_100c.abs	4.9	126	1.93	.09
61753_25c.sub	5.3	126	2.0	004
61753_100c.sub	4.8	127	1.98	004
61888_25c.abs	5.0	95	2.0	.08
61888_100c.abs	4.5	105	1.9	.09
61888_25c.sub	4.7	92	2.1	004
61888_100c.sub	4.2	103	2.0	004
bench2_25c.abs	47	290	1.85	.09
bench2_100c.abs	22	258	1.72	.1
bench2_25c.sub	45	278	1.9	004
bench2_100c.sub	20	243	1.8	004

